3GPP TSG_CN WG5#8

Tdoc N5-000329
Scottsdale, Arizona, USA

18th – 20th December, 2000

Source:
Ericsson

Title:
Multiple applications controlling a call in OSA.

Agenda item:
GCC / MPCC for OSA version 1

Document for:
DISCUSSION
1 Introduction

During the CN5#6 and CN5#7 meeting scenarios have been discussed where multiple applications are interested in the same call. This contribution shows how this can be achieved in the OSA.

2 Problem description

Applications subscribe to certain network events by invoking enableCallNotification on the Call Control manager interface. The details of the events (eventType, originating number range, terminating number range, etc) are set with the eventCriteria parameter. In case an application subscribes to events and the event criteria are overlapping with an already existing subscription, the subscription is rejected. This means that only one application can see the specific call and callLeg objects at the gateway side that are created in case of an incoming call event. This design principle was deliberately chosen in the past in order to first concentrate on call control without application interaction. However, there are cases for which it would be useful when OSA allows multiple applications to have a view on the call. This contribution outlines how this could be achieved.

3 Modelling principles in OSA

Before discussing Multiple applications per call, the modelling principles of OSA should be outlined. Basically, the state models describe the view of the application on the objects in the SCS / gateway. This also implicates that in case two applications are able to have a view on one call in the network, they only see their view of the call, i.e. each application will therefore view a different state model, see figure below:

[image: image1.wmf] Application 1

Call

CallLeg

CallLeg

 Application 2

Call

CallLeg

CallLeg

4 Scenarios

For the following we assume that the restriction on overlapping call event criteria is dropped, i.e. multiple applications can receive notifications for one specific call event.

4.1 Routing case.

The following sequence shows two applications serving the same user. In case a new call event occurs, both applications are informed of the new call by the SCS. Now in case application 1 decides to route the call to a B-party, there is currently no way to inform application 2 of the new party in the call.

A solution is to introduce an operation on the application side of the Call interface. This operation is invoked in case an additional party is to be added to the call, see also Figure 1. The operation should be similar to the partyJoined operation that is at the moment defined in the ConferenceCall interface. This means that the application will also be informed of the e.g. address associated with the new Call Leg. On the new call leg interface the application 2 then also can indicate the events it is interested in or perform other operations.

[image: image2.wmf]Application 1 :

Application

Application 2 :

Application

Party B 2: :

CallLeg

Party B 1 :

CallLeg

Call 2 : MPCall

Party A 2 :

CallLeg

Call 1 : MPCall

Party A 1 :

CallLeg

 : Network

 :

MPCallControlManager

callEventNotify

"new call event"

"check subscribed applications"

"new"

"new"

callEventNotify

routeReq

"new"

"new"

"new"

newCallLeg

"new"

Figure 1: routing case.

4.2 Re-routing case

In this case application 1 detects that after routing to B, subscriber B is busy and re-routes the call to party C. The sequence flow is shown in Figure 2. The flow for routing to B is not shown, see Figure 1 for this. When application 1 creates a new Call Leg for the C party, also application 2 will be informed in the same way as described in the routing case. In case Application 2 subscribed to the event for B party busy, it knows that the call has been re-routed from B to C.

[image: image3.wmf]Application 1 :

Application

Application 2 :

Application

Party B 2: :

CallLeg

Party C 2 :

CallLeg

Party C 1 :

CallLeg

Party B 1 :

CallLeg

Call 2 : MPCall

Party A 2 :

CallLeg

Call 1 : MPCall

Party A 1 :

CallLeg

 : Network

 :

MPCallControlManager

newCallLeg

"new"

routeReq(to B)

"new"

"party busy"

EventReportRes(Busy)

EventReportRes(busy)

routeReq(to C)

"new"

"new"

newCallLeg

Figure 2: re-routing case

4.3 Call release case

The next sequence shows how application 2 is informed when application 1 decides to end the call, see Figure 3. In this case application 1 invokes the operation release() on the call interface. Application 2 is informed with invocation of the callEnded() operation.

[image: image4.wmf]Application 1 :

Application

Application 2 :

Application

Party B 2: :

CallLeg

Party B 1 :

CallLeg

Call 2 : MPCall

Party A 2 :

CallLeg

Call 1 : MPCall

Party A 1 :

CallLeg

 : Network

 :

MPCallControlManager

newCallLeg

"new"

routeReq(to B)

"new"

"party answers"

EventReportRes(Answer)

EventReportRes(Answer)

release

callEnded

Figure 3: call release case

4.4 CallLeg release

The next sequence shows how application 2 is informed when application 1 decides to release the connection to the B-party, see Figure 4. In this case application 1 invokes the operation release() on the callLeg interface associated with party B. Application 2 is informed with an eventReportRes() with indication that the party has been disconnected.

[image: image5.wmf]Application 1 :

Application

Application 2 :

Application

Party B 2: :

CallLeg

Party B 1 :

CallLeg

Call 2 : MPCall

Party A 2 :

CallLeg

Call 1 : MPCall

Party A 1 :

CallLeg

 : Network

 :

MPCallControlManager

newCallLeg

"new"

routeReq(to B)

"new"

"party answers"

EventReportRes(Answer)

EventReportRes(Answer)

release

eventReportRes(leg released)

Figure 4: release of a call leg

5 Conclusions

By adding an operation on the application side of the call interface that informs applications of a call leg created on request of another application it becomes possible that multiple applications can have a view on a call.

� Contact information: Ard-Jan Moerdijk, Ericsson Eurolab Netherlands, Tel. +31-161242777, e-mail: Ard.Jan.Moerdijk@eln.ericsson.se

